Polyether polyol/CO₂ solutions: Solubility, mutual diffusivity, specific volume and interfacial tension by coupled gravimetry-Axisymmetric Drop Shape Analysis

Maria Rosaria Di Caprio a, Giovanni Dal Poggetto b, Maria Giovanna Pastore Carbone a, c, Ernesto Di Maio a, *, Sara Cavalcà d, Vanni Parenti d, Salvatore Iannace e

a Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
b Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
c Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Patras Achaias 26504, Greece
d Dow Italia s.r.l, Polyurethanes R&D, Via Carpi 29, 42015 Correggio, Italy
e Institute for Macromolecular Studies, National Research Council, Via Edoardo Bassini, 15, 20133 Milan, Italy

Article history:
Received 29 March 2016
Received in revised form 8 June 2016
Accepted 9 June 2016
Available online 14 June 2016

Keywords:
Polyol
CO₂
Solubility
Diffusivity
Interfacial tension
Specific volume

A B S T R A C T

In this work we investigated the sorption of CO₂ in a formulated polyether polyol, typically used to obtain rigid polyurethane foams when it reacts with isocyanates. In particular, by using a fully-experimental, coupled gravimetry-Axisymmetric Drop Shape Analysis, solubility, mutual diffusivity, specific volume and interfacial tension of polyol/CO₂ solutions have been measured at 35 °C and at CO₂ pressures up to 8000 kPa.

CO₂-treated polyol was also subjected to Gel Permeation Chromatography (GPC) and Fourier Transform Infrared (FT-IR) spectroscopic analysis to evaluate the effect of the high-CO₂ pressure treatment. The results show quite a large CO₂ solubilization (up to 17% ca. in the examined experimental range), in turn responsible for a moderate swelling of the polymer and an extensive effect on the interfacial tension, which reaches vanishing values at the highest investigated pressure.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Rigid polyurethane foams (PURs) are closed-cell foamed plastic materials with excellent thermal insulating properties, used as a factory made material in the form of insulation boards or blocks, or in combination with various rigid facings for appliances as a construction material. In addition to the low thermal conductivity, PURs are stable and durable, which is an important feature to guarantee the stability of the insulating properties. In fact, in building applications, these materials must work for as long as the building stands and should have a useful life beyond 50 years [1].

The thermal insulation properties of PURs are due to the presence of closed micro-cells, filled with inert gases, which work, at micron scale, as insulated glazing do at macroscopic scale in reducing heat transfer in buildings. Thermal conductivities, depending on the total gas content (void volume fraction), on the pore topology (foam morphology) and on the thermal conductivities of both the polymer matrix and the gas [2], may reach values as low as 12 mW/(m K) [1]. Until recently, the inert gas most commonly used in polyurethane foams was R-11 (trichlorofluoromethane, CFC-11). However, the Montreal Protocol on substances that deplete the ozone layer has called for the phasing out of CFCs and their replacement with hydrocarbons, hydrofluorocarbons and CO₂. In particular, CO₂ is environmentally friendly and offers a long-term sustainable solution, due to its zero Ozone Depletion Potential (ODP) and its lowest Global Warming Potential (GWP), set equal to 1 as reference to other Green-House-Gases (GHG). Furthermore, CO₂ is non-flammable and is inexpensive, as it is readily available in the atmosphere and other natural sources [1].

The foamed structure of PURs is obtained by the simultaneous gelation reaction between polymeric precursors (polyol and
isocyanate) and gas generation, which can result from a physical, chemical or mechanical process. In physical foaming, a fluid such as hydrocarbons (mainly cyclopentane), hydrofluorocarbons or CO₂, is first solubilized at high pressure in the polymeric precursors at ambient temperature and then it is allowed to evolve from the solution by pressure quench (in this case, no chemical reaction involves the blowing process and the fluid is called Physical Blowing Agent (PBA)). In chemical foaming, the blowing agent is generated from a chemical reaction. Typically, the addition of water in the formulation allows for the reaction of water with isocyanate, to give unstable carbamic acid that decomposes to amine and CO₂ as a by-product, which blows the polymer [2]. In mechanical foaming, the gas, most commonly air, is dispersed into the starting components by vigorous agitation, which leaves entrapped air bubbles within the polymeric matrix. Most commonly, both PBA and water are used, in a combined chemical and physical foaming manner, with CO₂ being present in the reaction media in a dual form, as resulting from the chemical reaction of water with isocyanate and as a physical blowing agent, solubilized under pressure in either the polyol or the isocyanate component. The addition of water has to be finely controlled, as its reaction with the isocyanate may give polyurea as a by-product, which has detrimental effects on some physical and mechanical properties of the final foamed product, such as the stiffness and the strength, and has negative effects on processability [3].

In this context, it is of great importance to know how CO₂ gets into the polymeric precursors, to design the process and the equipment and to optimize the foaming reaction. For instance, CO₂ solubility will determine the amount of gas available for blowing the polymer, in turn defining the final density of the foam, while diffusivity determines the minimal residence time of contact between the gas and the polymeric precursors at processing temperature and pressure to achieve the desired polymer/gas solution. In foaming, furthermore, it has been evidenced how low molecular weight penetrants (in our case, CO₂) extensively affect other properties of the polymer/penetrant solutions, which are involved in the foaming process, namely the interfacial tension of the polymer/penetrant solution in contact with the penetrant and, to a lesser extent, the specific volume of the polymer/penetrant solutions.

A number of experimental techniques are available to measure the aforementioned properties of polymer/gas solution at processing pressures and temperatures; for a review on these techniques, the reader may refer to Di Maio et al. [4]. In this context, recently, Pastore Carbone et al. [5] introduced a coupled sorption-Axisymmetric Drop Shape Analysis (ADSA) technique to simultaneously measure the solubility, diffusivity, interfacial tension and specific volume of polymer/gas solutions in a single experiment. The coupling between gravimetric and optical measurements allows for a fully experimental determination of the aforementioned properties, without resorting to any predictive modeling, as is typically done to evaluate the specific volume of the polymer/gas solution which is needed to calculate sorbed amount and interfacial tension.

To the best of our knowledge, only two papers addressed sorption of CO₂ in polyols. Kazarian et al. [6] simultaneously measured CO₂ sorption and swelling in polyether polyols such as polyethylene glycol (PEG) and polypropylene glycol (PPG) by using in-situ near-infrared spectroscopy. Authors reported data on CO₂ sorption in PEG and corresponding volume increase (swelling) at 40 °C and up to 11600 kPa, evidencing a solubility of CO₂ of 22.6% by weight and a swelling of 35%; for PPG, measurement have been conducted at 25 °C and 35 °C and at pressures up to 6000 kPa. In particular, at 35 °C and 6000 kPa authors observed a solubility of 11.8% by weight and a swelling of 24.5%. Fieback et al. [7] measured the sorption of CO₂ and N₂ in a formulation of polyol (without any further details on its chemistry) and the correspondent swelling by using a magnetic suspension balance equipped with a view cell. Sorption experiments were conducted at temperatures ranging from 20 °C to 40 °C and at pressures up to 6000 kPa, and revealed a maximum in solubility of 38.2% by weight and a swelling as high as 47% at 20 °C and at 5400 kPa. To the best of our knowledge, no data have been reported so far on polyol/CO₂ mutual diffusivity and interfacial tension.

In this work, we report the use of the recently developed equipment based on the coupled sorption-ADSA [5,8] to measure solubility, mutual diffusivity, specific volume and interfacial tension of polyol/CO₂ solution. Measurements have been performed at 35 °C and at CO₂ pressures up to 6800 kPa.

2. Experimental section

2.1. Experimental set-up

The direct and simultaneous determination of solubility, diffusivity, interfacial tension and specific volume of polyol/CO₂ solutions is based on the coupling of gravimetric measurement with ADSA. In detail, it consists in the combination of the gravimetric determination of mass transfer from the CO₂ phase to the polyol contained in a crucible, and the simultaneous optical observation of volume and shape changes of a pendant drop (see Fig. 1). The adopted experimental set-up, schematized in Fig. 2, consists of a magnetic suspension balance (MSB) (Rutherford Prazisionsmesstechnik GmbH, Germany) equipped with a high pressure and temperature (HT-HP, up to 250 °C and 13500 kPa) view cell, where a custom-designed cylindrical crucible containing 0.5 g ca. of polyol hangs from the hook of the balance weight measuring assembly, and a rod is fixed inside the cell to which the polyol pendant drop is attached. In this experimental configuration, the balance is continuously measuring the weight change of the polyol contained in the crucible and, at the same time, a high-resolution digital camera acquires the profile of the pendant drop. The relative position of the crucible and of the rod is such to avoid any interference with the gravimetric measurement and to allow the reliable continuous acquisition of the drop shape. Drop changes in volume and shape were observed through two optical quality windows, by using an adjustable high resolution CCD camera (BV-7105H, Appro), equipped with a modular zoom lens system (Zoom6000, Navitar). The CCD camera is connected to a computer, and a commercial software (FTA32 Video 2.0, First Ten Angstroms) is used to analyze drop profile [5,8]. Furthermore, in order to achieving the optimal threshold background for digitizing the drop image, a uniform bright background was provided by light emitting diodes. Detailed description of the equipment and of some preliminary experimental phases, such as optimization of CCD parameters and image calibration (pixel/μm calibration and aberration correction), are described elsewhere [5].

The data flow adopted for the elaboration of the data acquired during the coupled sorption-ADSA measurement is illustrated in Fig. 3. First, from the gravimetric experiment, apparent solubility (i.e. not yet corrected to account for the effect of change of sample buoyancy due to sorption and compressive action of pressure) was measured as a function of gas pressure. Concurrently, from ADSA, the profile of the pendant polyol/gas drop was computed. As described in detail in Pastore Carbone et al. [5], data from ADSA were used to evaluate the volume of the polyol/CO₂ solution contained in the crucible (A), thus allowing for the correction of sorption data with the proper buoyancy force and, consequently, for the calculation of actual solubility and diffusivity of the polyol/CO₂ solution at each gas pressure (B). Then, the specific volume of
the polyol/gas solution was calculated from CO₂ sorption amount and solution volume per unit mass of polyol (C). As a final step, this value was fed to the ADSA software to calculate (properly, by correcting gravitational forces with actual drop mass) the interfacial tension (D) [5,8].

A Teflon rod with a diameter of 2.03 mm was chosen as drop holder. The pendant drop was created by disposing a small amount of polyol on the top of the rod, using a pipette. Care was taken in order not to wet the lateral surface of the rod itself.

After having placed both the crucible containing the polyol and the rod with the polyol drop in the HT–HP view cell, sorption and ADSA experiments were carried out by isothermal pressure increments up to 6800 kPa, at 35 °C which is the typical temperature utilized in the industry to conduct polyurethane foam synthesis in presence of CO₂ at high pressure. In detail, sorption measurements were performed by step-wise increments of the gas pressure (500 kPa steps ca.), after the attainment of equilibrium sorption in the previous step. Concurrently, during each pressure step, image acquisition of the pendant drop was performed every 10 min.

Drop preparation is a fundamental step in ADSA technique, in particular in the selection of the drop size. It has been found that, if the drop is too small (Bond number ≪ 1) and, correspondingly, its shape is close to a hemisphere, numerical problems arise in the fitting procedure; furthermore, if the drop is bigger than a critical volume (Bond number ≫ 1), it necks and detaches from the rod [5,9,10]. Here, small or big depends on drop volume, drop mass, interfacial tension and density of outer phase (CO₂). Since all of these conditions change dramatically at the different CO₂ pressures, it is not possible, in the experimental range of interest in this work, to use a single drop size. As the CO₂ pressure increases, the drop swells until it detaches from the rod. In our case, we were interested in conditions of CO₂ at high pressure and we were, then, forced to use three different initial drop sizes (V₀ is the volume of the drop under vacuum), each suitable for a different pressure range. Fig. 4 reports the optical images of different drops for the different conditions of measure. The partial overlap of the pressure range...
ranges (see Fig. 4) is then a good check for the reliability of the volume and interfacial tension data and for the whole data evaluation chain.

ADSA experiments were performed up to 6800 kPa, while gravimetric experiments were extended up to 8000 kPa. Gravimetric data were obtained on two replicates.

2.2. Materials

A formulated polyether polyol (Table 1) was supplied by DOW Italia S.r.l. (Correggio, RE, Italy) and used “as received”. This polyol is the reference for the LIFE13-EN/IT/001238 project (http://ec.europa.eu/environment/life/). High purity grade CO2 was supplied by SOL (Naples, Italy).

2.3. Data treatment

Data treatment is described in the following, according to the measurement flow chart reported in Fig. 3. Details of the whole data treatment chain are described in Pastore Carbone et al. [5].

2.3.1. Evaluation of the swelling of the polymer/gas solution

Firstly, the optical observation of volume changes of the polyol drop exposed to CO2 atmosphere was used for the analysis of the swelling of the polyol/CO2 solution. In particular, for each pressure step, the volume of the CO2-saturated polyol drop, \(V_d(p) \), was computed by integrating the drop profile, as performed by the ADSA software. The volume of the sample contained in the crucible, \(V_c(p) \), at equilibrium, can then be calculated as by Eq. (1):

\[
V_c(p) = \frac{V_d(p) - V_d^0}{V_d^0} V_c^0 + V_c^0
\]

where \(V_d^0 \) and \(V_c^0 \) are, respectively, the volume of the drop and the volume of the polyol contained in the crucible at initial conditions (under vacuum). It was assumed that, at equilibrium, drop curvature has negligible effects on specific volume and local gas concentration [11] and, consequently, that the drop and the sample in the crucible reach the same volume per unit mass of starting polyol.

2.3.2. Actual solubility and diffusivity

Data obtained from the gravimetric determination of mass transfer from the CO2 phase to the polyol contained in a crucible suffer from buoyancy effect due to change in gas density at several pressures and to sample swelling upon sorption. The so-called “apparent solubility” needs to be corrected with the proper buoyancy force. Having calculated in Section 2.3.1. (A in Fig. 3), for each pressure, the volume at equilibrium of the sample contained in the crucible, \(V_c(p) \), it was used for proper evaluation of buoyance, to correct gravimetric data thus giving the actual gas weight fraction in the polyol/CO2 solution (\(\omega_{ACT} \)), as calculated as by Eq. (2):

\[
\omega_{ACT}(p) = \frac{W_{ACT}^{GAS}(p)}{W_c^0 + W_{ACT}^{GAS}(p)}
\]

where \(W_c^0 \) is the initial weight of the sample contained in the crucible (as measured by an analytical balance) and \(W_{ACT}^{GAS} \) is the actual gas weight gain, as calculated as by Eq. (3):

![Fig. 3. Data flow used in the coupled sorption–ADSA measurement (in yellow properties measured in this contribution). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image1)

![Fig. 4. Digitalized images of the different polyol drops utilized in the different pressure ranges (blue bar), under vacuum and at measuring pressure. Asterisk indicate drop detach event; dashed line indicate pressure range where numerical ADSA procedure gives inaccurate interfacial tension calculation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image2)
here, BR_e is the Rubotherm balance reading at equilibrium at each pressure (attainment of homogeneous CO₂ concentration). BR_∞ is the initial balance reading at equilibrium (under vacuum), W_{gas} is the CO₂ density [12], V₀ is the volume of crucible and of hook (see Fig. 1) that was previously determined by evaluating the buoyancy effect in a blank test with helium.

The kinetics of sample weight increase in step-wise sorption experiments was analyzed to gather information on the value of the average mutual diffusivity as a function of CO₂ concentration in the polyol. The average mutual diffusivity (D) in each step-wise sorption experiment was calculated as follows [13]:

\[
D = \frac{\pi L^2}{4} \left(\frac{d(M_t/M_{\infty})}{d(\sqrt{t})} \right)^2
\]

(4)

where M_t is the mass of the CO₂ sorbed at time t and M_∞ is the mass of the CO₂ sorbed at equilibrium and L is the actual sample thickness (sample is exposed to the gas phase on one side only). M_t has been calculated as BR_(t) - BR₍₀₎ and M_∞ has been calculated as BR_(∞) - BR₍₀₎, where BR₍₀₎ is the balance reading just after the pressurization, BR_(t) is the balance reading at time t, BR_(∞) is the balance reading at equilibrium.

The value of D calculated through Eq. (4) corresponds to the value of the CO₂ mutual diffusivity, D(C) at an intermediate concentration, C, the value of which can be calculated according to the procedures proposed by Vrentas and Duda [14]. Since L increases as the CO₂ sorbed amount increases, the actual sample thickness used in this analysis was evaluated on the basis of the arithmetic average of initial and final measured equilibrium volume of the polymer-gas solution. It is worth noting that the evaluation of diffusivity was based on balance reading, and the buoyancy correction was applied only to correct for the initial lift promoted by the additive gas entering the measuring cell during the step pressure increase. Actually, the lift changes also during sorption due to the weight and, in turn, volume increase of the polyol-CO₂ mixture. However, in view of the slight weight increase during a step sorption, this correction was not applied.

2.3.4. Evaluation of interfacial tension of the polymer/gas solution

Finally, the determination of the interfacial tension of the separation surface between the polyol-CO₂ solution and the surrounding CO₂, γ, was performed by using the well-established ADSA, which consists in fitting the shape of the experimental drop (that was continuously monitored during the simultaneous measurement) to the theoretical drop profile according to the Laplace equation, properly modified to account for the action of the gravitational field [15–17]. Therefore, the specific volume of the solution at different pressures, v_s(p), as determined according to Section 2.3.3. (C in Fig. 3), was used as input to the ADSA software to perform the calculation of the equilibrium value of interfacial tension at each pressure.

2.4. Gel permeation chromatography analysis

Gel Permeation Chromatography (GPC) analysis was conducted on the “as received” polyol and on the polyol recovered from the crucible after the sorption campaign (addressed to, in the following, as “treated” polyol) in order to verify any effect of the treatment on molecular weight.

The samples were completely dissolved in THF in concentration of ≈0.5% w/v and passed through a 0.22 μm PTFE membrane filter. Measurements were performed on an injected volume of 100 µL by using a Malvern – Viscotek GPC MAX/TDA 305 quadrupole detector array equipped with a precolumn and two columns Phenogel Phenomenex with exclusion limits 106 and 103 respectively. The GPC instrument was used at flow rate of 0.8 mL/min and at column and system temperature of 35 °C. Universal calibration was based on a series of polystyrene standards ranging in molecular weight from 150000 to 1500.

2.5. Transmission Fourier transform infrared analysis

Fourier Transform Infrared (FT-IR) spectroscopy was conducted on the “as received” polyol and on the extracted fluid contained in the CO₂-rich phase spilled from the pressure vessel, after CO₂ volatilization (addressed to, in the following, as “extracted” polyol). Spectra were collected at room temperature by using a Nexus Nicolet apparatus with a wavenumber resolution of 4 cm⁻¹, from 4000 to 400 cm⁻¹, for 64 scans.

3. Results and discussion

3.1. Sorption isotherm

Fig. 5 reports the sorption isotherm for the polyol-CO₂ solution (calculated as by eq. (2)), up to 8000 kPa and at a temperature of 35 °C, showing a rather linear dependence, with a maximum γ_{ACT} of 17% at a pressure of 8000 kPa. Data are also reported in Table 2.

Since polyol drop detaches at 6800 kPa (see Fig. 4), the last two data, at pressure of 7405 kPa and 7989 kPa, were estimated by extrapolating V_{df}(p), as reported in the inset of Fig. 5.

It is worth noting, further, that above 8000 kPa (at a
residence times are needed in industrial applications to attain equilibrium.

3.3. Specific volume

Fig. 7 shows the specific volume of the polyol/CO₂ solutions in the investigated experimental range, calculated as by eq. (5). \(V_s \) data, reported in Table 4, evidence a non-monotonic dependence. In fact, when a polymer is exposed to a high-pressure gas, two mechanisms compete in affecting the specific volume: (i) compression of the gas-saturated polymer by the mechanical action of pressure exerted by the external gas; (ii) gas-solubilization. With the increase of external gas pressure, the latter mechanism is responsible for an increase of the volume, while the first is responsible for a reduction of the volume. In our case, \(V_d(p) \) is monotonically increasing with gas pressure, proving a prevailing effect of the gas solubilization. However, mass increase of the gas saturated polymer drop is occurring. As a final balance, in our case, at low gas concentration, the mass increase is the dominant effect, and a reduction of \(V_s \) is observed. At higher gas concentration, conversely, the volume increase becomes the predominant effect. This non monotonic dependence has been already observed on equilibrium.

Table 3

<table>
<thead>
<tr>
<th>(p) (kPa)</th>
<th>(d_{ACT}) (g/g)</th>
<th>(D) (cm²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.0064</td>
<td>6e−07</td>
<td></td>
</tr>
<tr>
<td>0.0132</td>
<td>1.0e−06</td>
<td></td>
</tr>
<tr>
<td>0.0216</td>
<td>1.1e−06</td>
<td></td>
</tr>
<tr>
<td>0.0235</td>
<td>8e−07</td>
<td></td>
</tr>
<tr>
<td>0.03147</td>
<td>1.4e−06</td>
<td></td>
</tr>
<tr>
<td>0.0374</td>
<td>1.5e−06</td>
<td></td>
</tr>
<tr>
<td>0.0414</td>
<td>1.6e−06</td>
<td></td>
</tr>
<tr>
<td>0.051</td>
<td>1.2e−06</td>
<td></td>
</tr>
<tr>
<td>0.052</td>
<td>1.3e−06</td>
<td></td>
</tr>
<tr>
<td>0.061</td>
<td>3.8e−06</td>
<td></td>
</tr>
<tr>
<td>0.0866</td>
<td>1.7e−06</td>
<td></td>
</tr>
<tr>
<td>0.071</td>
<td>1.9e−06</td>
<td></td>
</tr>
<tr>
<td>0.080</td>
<td>1.7e−06</td>
<td></td>
</tr>
<tr>
<td>0.094</td>
<td>3.3e−06</td>
<td></td>
</tr>
<tr>
<td>0.109</td>
<td>5.7e−06</td>
<td></td>
</tr>
<tr>
<td>0.123</td>
<td>2.8e−06</td>
<td></td>
</tr>
<tr>
<td>0.135</td>
<td>1.21e−05</td>
<td></td>
</tr>
</tbody>
</table>

Uncertainty is ±5e−07 cm²/s for \(D \).
PCL/CO$_2$ [5,8] and has been justified (and also verified by Raman spectroscopy) in view of the presence, in the PCL/CO$_2$ solution, of two populations of CO$_2$ molecules, one polymer-associated and one non-associated, with associated molecules contributing a lower volume of mixing as compared to non-associated ones and a prevalence of associated molecules at low CO$_2$ pressure [18]. As in the cited work, spectroscopic experiments on our system could reveal the existence of molecular interactions between the polyol and CO$_2$, which would help explaining the non-monotonic dependence of specific volume of polyol/CO$_2$ solution.

3.4. Interfacial tension of the polyol/gas solution

Fig. 8 reports the effect of CO$_2$ concentration on γ. In the selected experimental range, interfacial tension of the polyol was found to be nearly linear decreasing function of the CO$_2$ pressure (data are reported in Table 5). Such a decrease in the interfacial tension with the gas pressure has already been reported elsewhere [19–23] and is generally attributed to two concurrent phenomena [22,23]: (i) as pressure increases, the free energy density of CO$_2$ becomes closer to that of the polymer phase and the interfacial tension decreases; (ii) as gas pressure increases, the concentration of CO$_2$ in the polymer phase increases thus further promoting a decrease of interfacial tension since the two phases in contact become more similar.

Table 4

<table>
<thead>
<tr>
<th>ω_{ACT} [g/g]</th>
<th>V_s [cm3/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.928</td>
</tr>
<tr>
<td>0.0029</td>
<td>0.927</td>
</tr>
<tr>
<td>0.0097</td>
<td>0.926</td>
</tr>
<tr>
<td>0.0166</td>
<td>0.925</td>
</tr>
<tr>
<td>0.0265</td>
<td>0.924</td>
</tr>
<tr>
<td>0.03041</td>
<td>0.923</td>
</tr>
<tr>
<td>0.0364</td>
<td>0.924</td>
</tr>
<tr>
<td>0.0443</td>
<td>0.923</td>
</tr>
<tr>
<td>0.058</td>
<td>0.924</td>
</tr>
<tr>
<td>0.072</td>
<td>0.925</td>
</tr>
<tr>
<td>0.087</td>
<td>0.927</td>
</tr>
<tr>
<td>0.101</td>
<td>0.929</td>
</tr>
<tr>
<td>0.116</td>
<td>0.933</td>
</tr>
<tr>
<td>0.130</td>
<td>0.936</td>
</tr>
<tr>
<td>0.140</td>
<td>0.939</td>
</tr>
<tr>
<td>0.158</td>
<td>0.944</td>
</tr>
<tr>
<td>0.172</td>
<td>0.948</td>
</tr>
</tbody>
</table>

Uncertainty is ±0.5% for V_s.

Table 5

<table>
<thead>
<tr>
<th>ω_{ACT} [g/g]</th>
<th>γ [mN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19.3</td>
</tr>
<tr>
<td>0.0029</td>
<td>19.0</td>
</tr>
<tr>
<td>0.0097</td>
<td>18.4</td>
</tr>
<tr>
<td>0.0166</td>
<td>17.8</td>
</tr>
<tr>
<td>0.0265</td>
<td>16.8</td>
</tr>
<tr>
<td>0.03041</td>
<td>16.5</td>
</tr>
<tr>
<td>0.0364</td>
<td>15.8</td>
</tr>
<tr>
<td>0.0443</td>
<td>15.1</td>
</tr>
<tr>
<td>0.0462</td>
<td>14.9</td>
</tr>
<tr>
<td>0.056</td>
<td>14.0</td>
</tr>
<tr>
<td>0.058</td>
<td>13.9</td>
</tr>
<tr>
<td>0.065</td>
<td>13.1</td>
</tr>
<tr>
<td>0.072</td>
<td>12.5</td>
</tr>
<tr>
<td>0.075</td>
<td>12.0</td>
</tr>
<tr>
<td>0.087</td>
<td>11.1</td>
</tr>
<tr>
<td>0.082</td>
<td>10.9</td>
</tr>
<tr>
<td>0.101</td>
<td>9.7</td>
</tr>
<tr>
<td>0.103</td>
<td>9.0</td>
</tr>
<tr>
<td>0.116</td>
<td>8.2</td>
</tr>
<tr>
<td>0.130</td>
<td>6.3</td>
</tr>
<tr>
<td>0.144</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Uncertainty is ±0.7 mN/m for γ.

Fig. 9. Macleod plot for the polyol/CO$_2$ solution (fitting with eq. (6)).
The density of the polyol/CO2 solution, and facial tension of the polyol/CO2 solution is vanishing, which, by investigated experimental range, these data reveal that the inter-
could justify the solubilization of the polyol in the CO2-rich phase observing that the densities of the two phases are approaching, [24]. To verify this signi-
characterization, as it is reported in the following.

A common treatment of interfacial tension data is based on Macleod’s relation (eq. (6)), in which \(\gamma\) is reported as function of the density difference between the dense and the light phases (in our case the polyol/CO2 solution and the CO2, respectively):

\[\gamma = C \left(\rho_s - \rho_{\text{gas}} \right)^n\] \hspace{1cm} (6)

where \(C\) is a characteristic constant for a given liquid, \(\rho_s = 1/V_s\) is the density of the polyol/CO2 solution, and \(n\) is the Macleod’s exponent. The exponent \(n\) is close to 4 for many unassociated liquids of low-
molecular-weight substances [25]. In our case \(\ln C\) is equal to 2.5 \((C = 12.2)\) while \(n\) is equal to 5.8 (see Fig. 9).

According to Sugden’s equation (eq. (7)) [26], from \(C\) it is possible to calculate the parachor \((P)\), an empirical constant that relates \(\gamma\) to the molecular volume:

\[P = C^{1/n} M - \rho_s - \rho_{\text{gas}}^{1/n}\] \hspace{1cm} (7)

where \(M\) is the molecular weight of the liquid. The quantity \(M(\rho_s - \rho_{\text{gas}})\) has the dimensions of a volume and, at low temper-
atures, where \(\rho_{\text{gas}}\) becomes very small, is the molecular volume of the polyol. In our case, \(M_w = 600\) and \(n = 5.8\) giving \(P = 925 \text{ (cm}^3/\text{mol})^n(\text{mN/m})^{1/5.8}\) (use of \(n = 4\) gives an estimate for \(P = 1124 \text{ (cm}^3/\text{mol})^n(\text{mN/m})^{1/4}\)).

The values of \(\gamma\) can be also correlated to CO2 concentration by using the following empirical equation [27]:

\[\gamma = \left(1 - \delta_{\text{ACT}}\right)\gamma_{\text{polyol}}^{1/r}\] \hspace{1cm} (8)

where \(\gamma_{\text{polyol}}\) is the surface tension of the “as received” polyol at 0 kPa.

From the fitting of the experimental data (not shown), the parameter \(r\) was estimated to be equal to 0.979.

3.5. GPC characterization

In Fig. 10a and b, the GPC refractive index and viscosity chromatograms, for the “as received” and the “treated” polyol, are reported. Both detection responses revealed that the “treated” polyol is missing some lower molecular weight fraction with respect to the “as received” one, possibly proving the extraction by the CO2 of the polyol contained in the crucible.

Data reveal the presence of two main molecular weight distributions, as also shown in Fig. 11 reporting the fitting of the refractive index chromatograms by two Gaussian functions (indicated as peak 1 and peak 2). For a quantitative estimation of the relative-concentration of the “as received” and the “treated” polyol, Table 6 reports the variation of the relative composition, above and below 600 Da (corresponding to the formulated polyol Mw average), which can be explained assuming that 56% of the fraction below 600 Da is extracted by CO2. To further verify this, FT-IR was conducted on the “as received” and the “extracted” polyols, as follows.

<table>
<thead>
<tr>
<th>Sample concentration mg/mL</th>
<th>Average Mw peak 1</th>
<th>Average Mw peak 2</th>
<th>% above 600 Da (peak 1)</th>
<th>% below 600 Da (peak 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“as received” polyol</td>
<td>5.656</td>
<td>738</td>
<td>302</td>
<td>68.7</td>
</tr>
<tr>
<td>“treated” polyol</td>
<td>5.572</td>
<td>877</td>
<td>298</td>
<td>83.3</td>
</tr>
</tbody>
</table>
3.6. FT-IR characterization

Fig. 12 shows the FT-IR spectra of the “as received” polyol and of the “extracted” fluid contained in the CO2-rich phase spilled from the pressure vessel, after CO2 volatilization. It can be observed that curves present the same spectral features with the main characteristic absorption bands of a polyether polyol at 1100 cm\(^{-1}\) (C-O-C ether stretch), 2840 cm\(^{-1}\) (C-H stretch) and at 3100–3600 cm\(^{-1}\) (O-H stretch) [28,29]. This may confirm that part of polyol was solubilized in CO2 at high pressures, thereby justifying the weight reduction observed at 8270 kPa.

4. Conclusions

Fully-experimental, coupled gravimetry-Axisymmetric Drop Shape Analysis has been utilized for measurement of solubility, diffusivity, specific volume and interfacial tension of polyol/CO2 solutions, at 35 °C and at pressures up to 8000 kPa.

In the investigated experimental range, the sorption isotherm for the polyol/CO2 solution shows a rather linear CO2 pressure dependence, with a maximum \(\Delta G_{sorption}\) of 17% at 8000 kPa. Mutual diffusivity goes from 1e–6 to 1e–5 cm\(^2\)/s in the whole experimental range, while the specific volume data evidence a non-monotonic dependence on CO2 mass fraction. Furthermore interfacial tension of the polyol was found to be a nearly linear decreasing function of the CO2 pressure. Finally, it has been found that, at pressures higher than 8000 kPa, low molecular weight components of polyol are solubilized in sc-CO2, as confirmed by GPC and FT-IR analysis.

Acknowledgements

The authors are grateful to Mr. Stefano Marrazzo for the machining of the teflon rod and to Dr. Barbara Liguori (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II) for FT-IR analysis.

References

